Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons.
نویسندگان
چکیده
In CA1 pyramidal neurons of the hippocampus, calcium-dependent spikes occur in vivo during specific behavioral states and may be enhanced during epileptiform activity. However, the mechanisms that control calcium spike initiation and repolarization are poorly understood. Using dendritic and somatic patch-pipette recordings, we show that calcium spikes are initiated in the apical dendrites of CA1 pyramidal neurons and drive bursts of sodium-dependent action potentials at the soma. Initiation of calcium spikes at the soma was suppressed in part by potassium channels activated by sodium-dependent action potentials. Low-threshold, putative D-type potassium channels [blocked by 100 microM 4-aminopyridine (4-AP) and 0.5-1 microM alpha-dendrotoxin (alpha-DTX)] played a prominent role in setting a high threshold for somatic calcium spikes, thus restricting initiation to the dendrites. DTX- and 4-AP-sensitive channels were activated during sodium-dependent action potentials and mediated a large component of their afterhyperpolarization. Once initiated, repetitive firing of calcium spikes was limited by activation of putative BK-type calcium-activated potassium channels (blocked by 250 microM tetraethylammonium chloride, 70 nM charybdotoxin, or 100 nM iberiotoxin). Thus, the concerted action of calcium- and voltage-activated potassium channels serves to focus spatially and temporally the membrane depolarization and calcium influx generated by calcium spikes during strong, synchronous network excitation.
منابع مشابه
BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells.
Neuronal potassium (K(+)) channels are usually regarded as largely inhibitory, i.e. reducing excitability. Here we show that BK-type calcium-activated K(+) channels enhance high-frequency firing and cause early spike frequency adaptation in neurons. By combining slice electrophysiology and computational modelling, we investigated functions of BK channels in regulation of high-frequency firing i...
متن کاملCalcium-activated potassium conductances contribute to action potential repolarization at the soma but not the dendrites of hippocampal CA1 pyramidal neurons.
Evidence is accumulating that voltage-gated channels are distributed nonuniformly throughout neurons and that this nonuniformity underlies regional differences in excitability within the single neuron. Previous reports have shown that Ca2+, Na+, A-type K+, and hyperpolarization-activated, mixed cation conductances have varying distributions in hippocampal CA1 pyramidal neurons, with significant...
متن کاملModulation of BK channels contributes to activity-dependent increase of excitability through MTORC1 activity in CA1 pyramidal cells of mouse hippocampus
Memory acquisition and synaptic plasticity are accompanied by changes in the intrinsic excitability of CA1 pyramidal neurons. These activity-dependent changes in excitability are mediated by modulation of intrinsic currents which alters the responsiveness of the cell to synaptic inputs. The afterhyperpolarization (AHP), a major contributor to the regulation of neuronal excitability, is reduced ...
متن کاملCoupling potentials in CA1 neurons during calcium-free-induced field burst activity.
Small amplitude depolarizations (fast prepotentials, spikelets) recorded in mammalian neurons are thought to represent either dendritic action potentials or presynaptic action potentials attenuated by gap junctions. We have used whole-cell recordings in an in vitro calcium-free model of epilepsy to record spikelets from CA1 neurons of the rat hippocampus. It was found that spikelet appearance w...
متن کاملDendritic potassium channels in hippocampal pyramidal neurons.
Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 20 شماره
صفحات -
تاریخ انتشار 1999